If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=300+150Y-16Y^2
We move all terms to the left:
-(300+150Y-16Y^2)=0
We get rid of parentheses
16Y^2-150Y-300=0
a = 16; b = -150; c = -300;
Δ = b2-4ac
Δ = -1502-4·16·(-300)
Δ = 41700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{41700}=\sqrt{100*417}=\sqrt{100}*\sqrt{417}=10\sqrt{417}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-10\sqrt{417}}{2*16}=\frac{150-10\sqrt{417}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+10\sqrt{417}}{2*16}=\frac{150+10\sqrt{417}}{32} $
| 9g+9=33 | | 5t+3=53 | | x+0,4=1,5x | | (4x-5)(-3x+7)=-2x(9+6x) | | 17x+10x=199 | | 7(x+4)-9=3x+4(5+x) | | 6l+7=55 | | 17x+10x=119 | | 5(3n+3)=6(9n+6)+6 | | 17x/17=119/17 | | 17x=199 | | 12n^2-6n=0 | | 3^(2n-1)=1/27 | | 1∕4p+5∕6=2∕3 | | 2.5x-50=0 | | 1/8^(3x^2-3x)=64^(9x-21) | | 1/8^3x^2-3x=64^9x-21 | | 25,000e⁰·⁰⁴⁵ˣ=35,000 | | 7y-11=y-1 | | 8/(x+4)^2=0 | | 9x-2=4×+18 | | 4c=3= | | -5(3t-3)+2t=8t-4 | | 11x+1+30x-3+20x-1=180 | | 1.5x+20=2.75x+11 | | m+3/2=-6 | | 4x-36+2x+10+4x-36=180 | | -4(-3x-8)-10x=20 | | T=3n/2 | | 4(3-5m)-7(5-4m)+3=0 | | 5n-12-7n+4=16 | | x/5-(-5)=7 |